129 research outputs found

    Combining in-situ and in-transit processing to enable extreme-scale scientific analysis

    Get PDF
    pre-printWith the onset of extreme-scale computing, I/O constraints make it increasingly difficult for scientists to save a sufficient amount of raw simulation data to persistent storage. One potential solution is to change the data analysis pipeline from a post-process centric to a concurrent approach based on either in-situ or in-transit processing. In this context computations are considered in-situ if they utilize the primary compute resources, while in-transit processing refers to offloading computations to a set of secondary resources using asynchronous data transfers. In this paper we explore the design and implementation of three common analysis techniques typically performed on large-scale scientific simulations: topological analysis, descriptive statistics, and visualization. We summarize algorithmic developments, describe a resource scheduling system to coordinate the execution of various analysis workflows, and discuss our implementation using the DataSpaces and ADIOS frameworks that support efficient data movement between in-situ and in-transit computations. We demonstrate the efficiency of our lightweight, flexible framework by deploying it on the Jaguar XK6 to analyze data generated by S3D, a massively parallel turbulent combustion code. Our framework allows scientists dealing with the data deluge at extreme scale to perform analyses at increased temporal resolutions, mitigate I/O costs, and significantly improve the time to insight

    Enabling adaptive scientific workflows via trigger detection

    Full text link
    Next generation architectures necessitate a shift away from traditional workflows in which the simulation state is saved at prescribed frequencies for post-processing analysis. While the need to shift to in~situ workflows has been acknowledged for some time, much of the current research is focused on static workflows, where the analysis that would have been done as a post-process is performed concurrently with the simulation at user-prescribed frequencies. Recently, research efforts are striving to enable adaptive workflows, in which the frequency, composition, and execution of computational and data manipulation steps dynamically depend on the state of the simulation. Adapting the workflow to the state of simulation in such a data-driven fashion puts extremely strict efficiency requirements on the analysis capabilities that are used to identify the transitions in the workflow. In this paper we build upon earlier work on trigger detection using sublinear techniques to drive adaptive workflows. Here we propose a methodology to detect the time when sudden heat release occurs in simulations of turbulent combustion. Our proposed method provides an alternative metric that can be used along with our former metric to increase the robustness of trigger detection. We show the effectiveness of our metric empirically for predicting heat release for two use cases.Comment: arXiv admin note: substantial text overlap with arXiv:1506.0825

    Exploring power behaviors and trade-offs of in-situ data analytics

    Get PDF
    pre-printAs scientific applications target exascale, challenges related to data and energy are becoming dominating concerns. For example, coupled simulation workflows are increasingly adopting in-situ data processing and analysis techniques to address costs and overheads due to data movement and I/O. However it is also critical to understand these overheads and associated trade-offs from an energy perspective. The goal of this paper is exploring data-related energy/performance trade-offs for end-to-end simulation workflows running at scale on current high-end computing systems. Specifically, this paper presents: (1) an analysis of the data-related behaviors of a combustion simulation workflow with an in-situ data analytics pipeline, running on the Titan system at ORNL; (2) a power model based on system power and data exchange patterns, which is empirically validated; and (3) the use of the model to characterize the energy behavior of the workflow and to explore energy/performance tradeoffs on current as well as emerging systems

    Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Get PDF
    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.140841

    Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid

    Get PDF
    Over seventy years ago, Niels Bohr described how the charge state of an atomic ion moving through a solid changes dynamically as a result of electron capture and loss processes, eventually resulting in an equilibrium charge state. Although obvious, this process has so far eluded direct experimental observation. By peeling a solid, such as graphite, layer by layer, and studying the transmission of highly charged ions through single-, bi- and trilayer graphene, we can now observe dynamical changes in ion charge states with monolayer precision. In addition we present a first-principles approach based on the virtual photon model for interparticle energy transfer to corroborate our findings. Our model that uses a Gaussian shaped dynamic polarisability rather than a spatial delta function is a major step in providing a self-consistent description for interparticle de-excitation processes at the limit of small separations

    Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid

    Get PDF
    Over seventy years ago, Niels Bohr described how the charge state of an atomic ion moving through a solid changes dynamically as a result of electron capture and loss processes, eventually resulting in an equilibrium charge state. Although obvious, this process has so far eluded direct experimental observation. By peeling a solid, such as graphite, layer by layer, and studying the transmission of highly charged ions through single-, bi- and trilayer graphene, we can now observe dynamical changes in ion charge states with monolayer precision. In addition we present a first-principles approach based on the virtual photon model for interparticle energy transfer to corroborate our findings. Our model that uses a Gaussian shaped dynamic polarisability rather than a spatial delta function is a major step in providing a self-consistent description for interparticle de-excitation processes at the limit of small separations
    • …
    corecore